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The purpose of this paper is to consider the A-subspaces of C(X), where
X =int X =R, X compact. It is known that these subspaces guarantee uniqueness of
best L ,-approximations for weighted approximation of continuous real-valued
functions. Some properties of the A-subspaces are proved. For example, it is shown
that every n-dimensional A-subspace contains an (7 — 1)-dimensional A4-subspace.
49 1988 Academic Press, Inc.

1. INTRODUCTION

Let X be a compact subset of the real Euclidean space R” (n2>1) such
that X =int X, i.e, X is the closure of its interior. By C(X) we denote the
linear space of all continuous real-valued functions defined on X.
Moreover, let

W={w: X —R:wis Lebesguc-mcasurable, bounded, and positive on X7},

the set of weight functions. For any we W we define the weighted L;-norm
by

1= VW de  (feClx),

If G is a finite-dimensional subspace of C(X), then a function g,€G is
called a best L,(w)-approximation of fe C(X) from G if | f— gol., <
If— gll,, for every g e G. The subspace G is called an L,(w)-unicity subspace
of C(X) if every f e C(X) has a unique best L,(w)-approximation from G.

In recent years the problem of existence of L,(w)-unicity subspaces was
widely investigated, because, unlike the situation in the uniform norm, an
L,(w)-unicity subspace is not necessarily a Haar subspace. For example,
Galkin [3] and Strauss [19] showed that every subspace of spline
functions with fixed knots (including the Haar subspaces) is an L (w)-
unicity subspace of C[a, b], where w=1 and [a, »] denotes a real compact

269

0021-9045/88 $3.00

Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.



270 MANFRED SOMMER

interval. Carroll and Braess [1] proved the same statement for every sub-
space of C[a, b] which is continuously composed by Haar subspaces.

Looking for a condition ensuring uniqueness, DeVore and Strauss for-
mulated a condition, the so-called A-property, which is sufficient to
guarantee L,(w)-uniqueness for every we W (see [21]). This condition
depends only on inner properties of the approximating subspace and it is in
many instances verifiable. For example, the above-mentioned spline
subspaces satisfy the A-property. Moreover, we showed in [11, 12] that
certain subspaces of generalized spline functions in C[a, 4], including those
mentioned above, also satisfy the A-property and guarantee therefore
L, (w)-uniqueness for every we W.

Kro6 [6] and Pinkus [8] were able to show that the A-property is also
necessary for L (w)-uniqueness. More precisely, Krod proved that if G is
an L (w)-unicity subspace of C[a,b] for every weW satisfying
inf, _,»7 w(x)>0, then G satisfies the 4-property, and Pinkus proved this
statement under the weaker hypothesis that G is an L,(w)-unicity subspace
for every continuous w e W, however, he had to make minor restrictions on
G. Using the same arguments as in [6] we generalized in [14] Krod’s
result for L,;(w)-unicity subspaces of C(X), where X = R” (n>1). Recently
Kro6 [7] extended this statement to L,(w)-unicity subspaces of C(X, B),
where as above X< R” (n>1) and B denotes a real Banach space.

In the case when X = [0, 1], Pinkus [8] characterized those subspaces
of C[0, 1] which satisfy the A-property. He showed that every such sub-
space is a very spline-like space similar to those generalized spline spaces
which we considered in [11, 12]. Recently Pinkus and Wajnryb [9] were
able to characterize all A-subspaces of C(X), where X < R, and they gave
necessary conditions ensuring the A-property in the case when X< R”
(n=1).

Using their results we study the A-subspaces of C(X), where X =R, in
more detail. We proved in [ 14] that every such A-subspace G is necessarily
a weak Chebyshev subspace. Hence it follows from results in Sommer and
Strauss [16] and Stockenberg [17] that there exists a basis { g, .., g,} of
G such that span {g,,.. g;} is again a weak Chebyshev subspace,
1<i<n—1. In this paper we prove that there exists a basis {g,,.., 2.}
of G such that span {g,,..,g;} is even an A-subspace, 1<i<n—1.
Moreover, we show that the restriction of an A-subspace G to certain (but
not to all) subsets X of X is again an A-subspace. This is different from the
situation for a weak Chebyshev subspace G, because G|z is always a weak
Chebyshev subspace for every ¥ c X (see also [12]).

Finally, it should be noted that the only known instances of “nontrivial”
A-subspaces of C(X), where X = R" and n > 1, are subspaces of affine-linear
functions (see Kroo [5]) and certain subspaces of bivariate linear spline
functions (see [15]).
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2. THE A-PROPERTY

Let X=int XcR" (r21), X compact, and let G denote an n-dimen-
sional subspace of C(X). Then the subset G* of C(X) is defined by

G* = { g* € C(X): there exists a function g'e G
such that | g*(x)| = | g'(x)| for every x € X'}.

Such sets were introduced by Strauss [20] to characterize the L, (w)-
unicity subspaces of C[a, b].
Moreover, set

Z(G)={xeX: g(x)=0forevery ge G}

and for any ge G let
Z(g)={xe X: g(x)=0}.

Now the A-property can be defined as follows.

DerFINITION. We say that G satisfies the A-property (or G is an A-sub-
space of C(X)) if for any g*e G*\{0} there exists a function ge G\ {0}
such that

(1) g(x)=0ae. on Z(g*) and
(2) £(x)g*(x)=0 for every xe X\Z(g*).

In the case when X = [aq, b], the A-property was introduced by DeVore
and Strauss (see [21]). The above version is due to Krod [5]. Obviously
this defintion depends only on inner properties of the subspace G and it is
independent of some we W.

The following characterization shows that the A-property is closely
related to the problem of existence of L,(w)-unicity subspaces of C(X).

THEOREM 2.1. The following conditions are equivalent:

(1) G is an L(w)-unicity subspace for every weW with
inf, ., w(x)>0;

(2) G satisfies the A-property.

Remark. 1In the case when X=[a, b], the implication (2)= (1) was
verified by Strauss [21] and the converse was proved by Kro6 [6]. At the
same time, Pinkus [8] also verified the implication (1)=-(2) for those sub-
spaces G of C[0,1] for which A(Z(g))=A(int Z(g)) (geG), where A
denotes the Lebesgue measure, but under the weaker hypothesis that G is
an L (w)-unicity subspace for every continuous we W.

640/52/3-3



272 MANFRED SOMMER

Using the same arguments as in [6] we proved Theorem 2.1 in [14], ie.,
for any compact subset X of R (> 1) with X =int X.

Independently of us, Kroo [7] studied the problem of existence of
L,(w)-unicity subspaces of C(X, B), where X is the same subset of R” as
above and C(X, B) denotes the space of continuous functions from X to a
real Banach space B. He extended the statement of Theorem 2.1 by
showing in [7] that if B is a strictly convex Banach space, then (2)
implies (1), and if B is a smooth Banach space, then the converse also
holds.

Some partial results of Theorem 2.1 were obtained in [S5, 13].

As we mentioned in the Introduction, several classes of A-subspaces of
Cla, b] were defined in [1, 3, 11, 12, 197, including Haar subspaces and
subspaces of spline functions. All these spaces have a common property
which plays an important role in approximation theory, the so-called weak
Chebyshev property.

We first record this definition and some properties of weak Chebyshev
subspaces, which we will use in the following.

DEerFINITION.  Let X <R and let G denote an n-dimensional subspace of
C(X). Then G is said to be weak Chebyshev if each g € G has at most n— 1
sign changes, i.e., there do not exist points x, < --- <x, ., in X such that
glx;)glx;1.1)<0,i=1, ., a

THeorReM 2.2 (Jones and Karlovitz [4]). Let X=[0,1]1<R and let G
denote an n-dimensional subspace of C[0, 1]. Then the following conditions
are equivalent:

(1) G is a weak Chebyshev subspace;
(2) Given 0=xo<x, < --- <X,_,<x,=1 there exists a ge G\ {0}
for which

(“1)’g(x)20’ xe[xi417~xi]7i=1’-"’n'

THEOREM 2.3 (Stockenberg [17]). Let X< R and let G denote an n-
dimensional weak Chebyshev subspace of C(X). Then there exists an (n—1)-
dimensional subspace G of G such that G is weak Chebyshev.

Remark. Independently of Stockenberg, Sommer and Strauss [16]
proved the statement of the above theorem in the case when X'=[0, 1].

THEOREM 2.4 [12]. Let X=1[0,1] and let G denote an n-dimensional
weak Chebyshev subspace of C[0,1]. For any 0<a<b<l, Gl is a
weak Chebyshev subspace of dimension <n.
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To state a further result on weak Chebyshev subspaces we need the
following notations.

DEFINITION. Let X< R and let x, < --- <x, be zeros of a function f
which is defined on X. Then the zeros x,, .., x,, are said to be separated if
there exist y; e (x;, x;, ), | <i<n—1 such that f(y,)#0.

THEOREM 2.5 (Stockenberg [18]). Let X< R and let G denote an n-
dimensional weak Chebyshev subspace of C(X). Then the following conditions
hold.

(1) If there is a ge G with n separated zeros z, < --- <z, in X such
that {z,, ...z,} NZ(G)=, then g(x)=0 for all xe X with x<z, and
X2z,

(2) Every ge G has at most n separated zeros in X\Z(G).

Moreover, we will use a result on Haar subspaces which was proved by
Krein (see Rutman [10]).

THEOREM 2.6. Let X=(0,1) and let G denote an n-dimensional Haar
subspace of C(X). Then there exists a basis { gy, ... ,} of G such that span
{g,. g} is a Haar subspace of C(X), 1<i<n—1.

The following result shows that the weak Chebyshev spaces also play an
important role in L,-approximation.

THEOREM 2.7 [14]. Let X=1nt X R, X compact, and let G denote an
A-subspace of C(X). Then G is weak Chebyshev.

Now let X =int X < R” (n>1), X compact, and let G denote an n-dimen-
sional subspace of C(X). Let ge G\ {0}. Then X\Z(g) is open with respect
to X. As such it is an at most countable union of open (w.r.t. X) connected
domains. We denote by |X\Z(g)| the number of such open connected
domains. This number may be infinite.

Our investigations of the A-subspaces are based on the following
theorems.

TueorReM 2.8 (Pinkus and Wajnryb [9]). Assume that G satisfies the
A-property. Then the following statements hold.

(1) Let g*eG\{0} and
G(g*)={geG: g(x)=0ae. onZ(g*)}.
Then for every ge G(g*),

| X\Z(g)| <dim G(g*).
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(2) If X\Z(G) is not connected, then G decomposes, ie., X\Z(G)=

¥_ A, where A, is open connected in X, and if dim G|, =m; (m;>1),

L <i<k, then 3 m;=n and there exist functions { g{", .., g} in G such
that

G| =span{g"|,, .., g9 4}
and g\" vanishes identically off A;,, 1 <j<m,;, 1<i<k.

Remark. (1) In the case when X=[0,1], the above result was
obtained by Pinkus [8].

(2) Statement (1) of the above theorem immediately implies that if
X c R, then G(g*) and, in particular, G are weak Chebyshev subspaces of
C(X).

(3) Using the same notations as in Theorem 2.8, set G,=
span{ g\, .., g}, 1 <i<k. Then by statement (2),

G=G,® - ®G,.

Moreover, it is easily verified that G, is an A-subspace of C(X), | <i<k.
Conversely, if G, is an A-subspace of C(X) such that all functions in G,
vanish identically off 4,, 1 <i<k, then the space G defined by

G=G,® - @G,
is an A-subspace of C(X).

In the following we are only interested in the case when X < R. In this
case the connected domains 4, in X reduce to real bounded closed, open,
or half-open intervals. On the basis of Theorem 2.8 and the above remark
we can therefore assume that X=1[0,1] and Z(G)n (0, 1)= ¢&. Recently
Pinkus [8] was able to characterize all A-subspaces of C[0, 1].

To state his result we first present the following definition.

DerFmNITION.  We say that [a, 6], 0<a<b <1, is a zero interval of ge G
if g(x)=0 for every xe [a, b] and g(x)#0 for every xe(a—¢, a), some
e>0, if >0 and g(x)#0 for every xe (b, b+¢), some >0, if b< 1.

THEOREM 2.9 (Pinkus [8]). Let G be an n-dimensional subspace of
C[0, 1] and assume that Z(G)n (0, 1) = . Then G satisfies the A-property
if and only if the following conditions (1)-(4) hold:

(1) G is a weak Chebyshev space;
(2) There exist points O=co<c, < - <¢;<¢; =1 (0<1<2n-2)
such that G|.,_,., is a Haar subspace, 1 <i<I+1;
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(3) If [a, b] is a zero interval of ge G\{0}, then a=c,, b=c, for
some O < p<q<l+1, and there exists an he G for which

glx) if 0<x<a
h(x):{O if a<x<l1

and there exists an he G for which

) = 0 if 0<x<bh
= g(x) if b<x<l,

4) If G,={geG:g(x)=0 for every xe[0,c,)ul(c,, 1]} for
0< p<q<I+1, then G,, is a weak Chebyshev space of dimension <n.

Remark. (1) The set {c,, .., ¢,} denotes the ordered distinct points of
the set {b,,.,b,,a,,..,a,}, where, for every 1<p<s, [a,, 1] is a zero

interval of some ge G\ {0} and analogously for every 1 <g<r, [0,5, ] isa
zero interval of some ge G\{0}.

(2) By Theorems 2.8 and 2.9 and the remark following Theorem 2.8,
a characterization of all 4-subspaces of C(X), where X <R, is given.

3. SOME PROPERTIES OF A-SUBSPACES

At first we will show that every A-subspace G of C(X), where Xc R,
contains a basis {g,, .., g,} such that span{g,,.., g;} is also an A4-sub-
space, 1 <i<n— 1. By the arguments given in Section 2, it is sufficient to
consider the case when X=[0,1] and Z(G)n (0, 1)= .

Now let, for some n-dimensional 4-subspace G of C[0, 1], {¢,, .., ¢,} be
the ordered set of points from Theorem 2.9. If /=0, G is a Haar space on
(0, 1) and then by Theorem 2.6 there exists a basis { g, .., g,} of G such
that span {g,, .., g;} is also an A-subspace of C[0,1], 1<i<n~—1. If
=1, then by the above remark there exists a g€ G\ {0} such that g=0in
[0, ¢;] or g=0in [c;, 1]. This implies that dim G,,, ;> 1 or dim G, > 1,
where for 0<i<j</+1,

G,={geG:g=0in [c;, ]}
To prove our first main result we need the following statement.

LemMma 3.1. Let G be an n-dimensional A-subspace of C[0, 1] such that
Z(G)n (0, 1)= . Moreover, assume that [>1 and dim G,,, > 1. Then G
contains an (n — 1)-dimensional weak Chebyshev subspace G such that
GG
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Proof. We distinguish two cases.

(i) There exists a function ge G with g(1)#£0. Set
G={geG:g(1)=0}.

Then by Stockenberg [17, Theorem 1], G is an (n— 1)-dimensional weak
Chebyshev subspace. Moreover, since ¢, =1, G,,, , <G.

(i) Let g(1)=0 for every geG. Set for any xe (¢, ¢, ;)
G,={geG: g(x)=0}.

By the definition of ¢,, dim G|, ,=n for every xe(c,, ¢;,,). Moreover,
since Z(G)n (0, 1)=, for every xe(c, ¢,, ) there exists a ge G with
g(x)#0. Therefore by case (i), G, is an (n— 1)-dimensional weak
Chebyshev subspace of C[0, x] for every xe(c;, ¢;, ) and G, , = G,.

By Theorem 2.9, G|, is a Haar subspace. Obviously, dim G|, ;=
n—m; ,,, where m;,, ,=dimG,,,. Set r=n—m;,,. If r=1, then
Gli,iy=span { g}, where g(x)#0 for every xe(c,, 1). This implies that
dim G |(.,1;=0. If r>1, then, since g(x)=0 for every geG,, every
geGA\{0} has at most r—2 zeros in (¢, x) or identically vanishes
thereon. Moreover, it follows from G,,, , =G, and dim G ,=n—1 that
dim G, |, y=n—1—m,,=r— 1. Therefore, in both cases G, is a Haar
subspace of dimension r—1 on (¢, x). Then by Theorem 2.6 there exist
functions {h, ., .., h, _, .} in G such that span {h, , .., h, . }| ., is a Haar
subspace of dimension j, 1 <j<r—1.

Now let G=span { g, .., g, such that {g,, .., g,} are linearly indepen-
dent on [¢;,1] and g;,=0 in [c¢, 1] for r+1<i<n, te, G, =
span {g,,,.. g,}. Thenh, =37_ o, g, 1<j<r—1. Since we are only
interested in the properties of {h, , ...k, .} in [¢; 1], we may assume
that «; =0, r+1<i<n, 1<j<r—1. Moreover, assume that
max, .o, |4, (1)l =1 and &, has precisely j—1 changes in (c,, x) at the
points

zy=c,+ilx—c)j, I<i<j-L1<j<r—L

This holds for every xe(c,, 1). Then, since {h,, .., h,_;.} are contained
in the finite-dimensional space G, there exist a sequence (y,,) < (¢;, 1) and
functions {h,, .., h, _,} in G such that

lim y, =1 and lim max |k (1)—h(1)] =0, 1<j<r—1L

m— oo m-—o te[0,1]

Obviously, max, o;q|h(t)l=1, 1<j<r—1. Therefore, since h;=
iy g, ;70 for some ie {1, .., r}. Then the linear independence of
{gi,. &} on [¢, 1] implies that h; # 0 in [¢;, 1], 1 <j<r—1.
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Now we show that {4, .., h,_,} are linearly independent on [c,, 1]. At
first recall that no function in G which is nonzero on [c,, 1] has a zero
interval there. Hence every 4, has precisely j— 1 changes of sign in (¢, 1),
1 <j<r— 1. Moreover, it is easily verified that by the properties of
{hys o ho 1y}, span {h,, ., h;} is a weak Chebyshev subspace of
dimension j on (¢, 1], t <j<r—1. Therefore {h,, .., h,_,} are linearly
independent on [¢,, 1].

Now define

G: G,’H_]@Span{hl, ey hr— 1 }

By the above arguments, dim G =m,,, , +r—1=n~ 1. It remains to show
that G is weak Chebyshev. Assume that there exists a function g e G with at
least n— 1 sign changes in (0,1). Let §=3%"2! B:h,+> 7" ., 7,8 Since
the sequence (h;,,) converges uniformly to h;, 1<j<r—1, g can be
uniformy approximated by functions g, € G, . Then for some sufficiently
large m, g, has n—1 sign changes in (0, y,,), a contradiction to the weak
Chebyshev property of G, .

Thus we have obtained an (n— 1)-dimensional weak Chebyshev sub-
space G which contains G, ;.

We are now able to state our first main result.

THEOREM 3.2. Let G be an n-dimensional A-subspace of C[0, 1] such
that Z(G)n (0, 1)= . Then G contains an (n — t)-dimensional A-subspace
G.

Proof. U [=0, G is a Haar space on (0, 1), and then by Theorem 2.6
there exists a basis { g, .., g,} of G such that span {g,, .., g;} is also an
A-subspace of C[0,1], 1<ig<n—1.

If /> 1, then dim Gy, > | or dim G, , , > 1. Without loss of generality we
assume the latter.

Let G be the (n— 1)-dimensional subspace of G which was defined in the
above lemma. We wiil show that G is even an A-subspace. To do this let
g*eG* and let g, e G such that | go| =|g*| on [0, 1]. We distinguish three
cases.

(1) Let gy # 0 on [0,¢,] and let go=0 in some interval [c;, ¢;],
where 0 <c;<c;<1. Then by Theorem 2.9 there exists a function geG
such that

~(x)_ gO(x) if 0<x<(),—
£ if ¢, <x<1,
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which implies that ge G, ,. Now define
74 (x) = g%(x) if 0<x<e
£ o if ¢;<x<L

Then | §*| = | g] on [0, 1] and therefore g* e G} .. Itis easily verified that
G,,, is an A-subspace. Hence there exists a nonzero function §eG,,, ,
G,;.1 <@ such that

g(x)=0 a.c.on Z(g¥)
and
g(x)g*(x)=0 for every x e [0, 1]\Z(g*).
Therefore, since Z(g*) <= Z(g*) and g* = §* on [0, ¢,],

£(x)=0 a.e.on Z(g*)
and

g(x)g*(x)=0 for every xe [0, 1]\Z(g*).

(ii) Let go=0o0n [0, c,] for someie {1, ../} and let g, # O in every
interval [c;, ,, ¢;y, .11, 0<r<I—i If Go,< G, we can conclude exactly as
in case (i). (Note that G,; is also an A-subspace.)

Otherwise we set

G={geG:g=00n[0,¢]}

We will show that G is a weak Chebyshev subspace with dimension
mg,— 1, where mgy, = dim G ;. At first observe that, since G is a subspace of
G, G can be written as

G=G®span {g,, .. &},

where {g,,.., g,} are linearly independent on [0, ¢,]. Hence, n—1=
dim G'=dim G +r. Since dim G| ;=n—mey, r<n—my. This implies
that dim G =n— 1 —r > my,— 1. Therefore, since by assumption G,, ¢ G,
dim G =mg—1>0. Assume now that G is not weak Chebyshev. Then
there exists a function g e G with at least m,, — 1 sign changes in (c;, 1). By
the above arguments, dim G | [0,c] =" =n—my,. Moreover, by Theorem 2.4,
G| ro.;] is weak Chebyshev. Hence we find a function ge G with n—mg, — 1
sign changes in (0, ¢;). Then it is easily verified that for some sufficiently
small constant ¢, the function g+ ¢§ has at least n—1 sign changes in
(0, 1), which contradicts the weak Chebyshev property of G. Therefore, G
is an (mg; — 1)-dimensional weak Chebyshev space.
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By assumption, g, has only finitely many zeros in (c,, 1). If in particular
go has at most m,, — 2 zeros there, then the function g* has at most m,, — 2
sign changes. Therefore, using Theorems 2.2 and 2.3 and the fact that G is
weak Chebyshev, we find a nonzero function e G = G such that

£(x)=0 ae.onZ(g*)
and

g(x)g*(x)=0 forevery xe [0, 1 1\Z(g*).

Assume now that g* has at least my— 1 sign changes in (c;, 1). This
implies that g, has at least m,;— 1 zeros there. Let ¢; <z, < --- <z <1 be
all zeros wiEh signAchanges of g* Then s >m,— 1 and go(z,)=0, 1 <j<s.
Since go€ G and G is an (my,— 1)-dimensional weak Chebyshev space, by
Theorem 2.5, g(z,) =0 for every ge G and some pe {1, .. s}

Since g*e G* < G§,, by the A-property of G, there exists a function
g€ Gy, \{0} such that

g(x)g*(x)=0 for every xe[¢;,1].

If §eG, case (ii) is completely treated.
Assume therefore that §¢ G. Then G,; can be written as

Go, = G@®span {21

Obviously, g(z;)=0, 1 <j<s. Then by the above arguments, g(z,) =0 for
every ge Gy, Since G, is an A-space, it follows from Theorem 2.8 that
there exists a function g€ G,; such that
() = golx) if 0<x<z,
£ it z,<x<l.

Since by assumption g, has no zero interval in [c;, z,], [z,, 1] is a zero
interval of g. Then by the definition of {¢,,..,¢;}, z,=c, for some
ge {i+1,..,1}. This implies that ge G,,,\{0}.

Now define

_ g*(x) if O0<x<e
*(y) q
8"(x) {0 if ¢ <x<l.

Then |g*| =|g| and therefore g* e G¥,, ,. Since G, , is an A-space, there
exists a nonzero function geG,,, , = G,,, , < G such that

g(x)=0 ac.onZ(g*)
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and
g(x)g*(x)=0 for every x e [0, 1 J]\Z(g*).

Hence g(x) g*(x)=0 for every x€[c;, 1].

(iii) Let g, not vanish identically on a subinterval of [0, 1]. Then,
since dim G=#n and Z(G)n (0, 1)= J, by Theorem 2.5, g, and therefore
g* have at most n— 1 zeros in (0, 1). If in particular g* has at most n—2
sign changes in (0, 1), then, since G is an (n— 1)-dimensional weak
Chebyshev subspace, by Theorems 2.2 and 2.3 there exists a function
g€ G\ {0} such that

g(x)g*(x)=0 forevery xe [0, 1]\Z( g*).

Assume therefore that g* has precisely » — 1 sign changes in (0, 1), which
implies that g, has precisely n— 1 zeros 0 <z, < --- <z,_, <. Since G is
an A-space, there exists a function g€ G\{0} such that

g(x)g*(x)=20 forevery xe [0, 1]\Z(g*).

If 5 G, the statement is verified. Otherwise, G=G ® span { g}. Moreover,
it follows that g(z,)=0, 1 <j<n— 1. Assume now that g(z,) =0 for every
geG and some pe{l,..,n—1}. Then gz,)=0 implies that z, € Z(G), a
contradiction.

Hence we have shown that Z(G)n{z,,..z,_,}=. Then by
Theorem 2.5, go(x)=0 for all xe[0,1] with x<z, and x>z, ,, a
contradiction of the hypothesis on g,. Thus we have verified that g e G and
case (iii) is completely treated.

The following example willﬁ show that there exjst (n — 1)-dimensional
weak Chebyshev subspaces G of G such that G does not satisfy the
A-property.

ExaMPLE. Let G=span {g,, g,, &1 = C[0, 1], where g, =1,

() if 0<x<?
=13 i 3<xxl,

x if 0<gx<}
0 if i<x<l

Then it follows from Theorem 2.9 that G is an A-space and it can be
decomposed into Haar subspaces by the points ¢q=0, c; =%, ¢, =32, ¢;=1.
Now let G =span {g,, g, — g;}. Then it is easily verified that G is a two-
dimensional weak Chebyshev subspace of G, but it does not satisfy the
A-property, because condition (3) in Theorem 2.9 is violated.
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As we mentioned in Section 2, all arguments which we used in the case
X =[0, 1] remain valid in the general case when X' =int X < R, X compact.
We therefore obtain the following generalization of Theorem 3.2.

CoROLLARY. Let X=int X <R, X compact, and let G denote an n-
dimensional A-subspace of C(X). Then G has a basis {g,, .., g,} such that
span { g, .., g} is an A-space, 1 <i<n—1.

Now we will show that the restriction of an A4-space to certain subsets of
X is again an A-space.

THEOREM 3.3. Let G be an n-dimensional A-subspace of C[Q, 1] and
assume that Z(G) N (0 1y=@. If Lis a subinterval of [0, 1], then G=G|; is
an A-subspace of C(I) of dimension <n.

Proof. Assume that I=[a,b]<[0,1]. The statement is proved if
G = G|, satisfies the conditions (1)-(4) in Theorem 2.9.

Since by Theorem 2.7, G is a weak Chebyshev space, by Theorem 2.4, G
is also a weak Chebyshev space. Therefore condition (1) in Theorem 2.9 is
satisfied.

It follows from Theorem 2.9 that, since G is an A-space, there exist
points a=d,<d, < --- <d,<d, ,=b, where for some je {0, ..., [}

C'<do’d =Cp 1SqgSpd, 1 <¢yph
4= Ci+yq P i+

such that Gl(d,, .4y 1s @ Haar subspace, 1<g<p+1. Moreover, it is

obvious that G satisfies condition (3). By using this condition, the last
condition (4) is also easily verified.

As we mentioned above, the general case can be easily derived from the
case X=[0,1]. It is therefore not difficuit to prove the following
generalization of Theorem 3.3.

COROLLARY. Let X=int X< R, X compact, and let G denote an n-
dimensional A-subspace of C(X). If I is a real bounded interval, then G =G| ¢
is an A-subspace of C(X), where X =int(I n X).

Remark. (1) The above statement fails if we consider the restriction of
an A-space to an arbitrary compact subset X of X with ¥ =int X:

Let X=[0,1] and let ¥=[0,1]U[2 1]. Assume that G=span{l}.
Then G'=G|z does not satisfy the A-property, because for the function
g* € G* defined by

) .
ew={ | oo
4

//\ //\
//\ //\

1
3
1

1 if

3

no function ge G\ {0} exists such that g(x) g*(x)>0 for every xe X.
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(2) Let X be an arbitrary compact real subset and let G denote an »-
dimensional weak Chebyshev subspace of C(X). If X is any compact subset
of X, then, unlike the situation for A4-spaces, the restriction of G to X is
always a weak Chebyshev subspace of C(X). To prove this let /= [min X,
max X]. Then /\X is open with respect to 7 and therefore it is an at most
countable union of disjoint open intervals. Hence every fe C(X) can be
extended to a unique function Lf € C(I) defined by Lf= fon X and Lf is
linear on each of the disjoint open intervals whose union is I\ X. Let

LG={LgeC(I):geG}.

It was proved by Deutsch, Nirnberger, and Singer [2] that LG is an n-
dimensional weak Chebyshev subspace of C(I). Now set = [min X,
max X]. Then Tc 7 and, by Theorem 2.4, LG|; is a weak Chebyshev sub-
space of C(I) of dimension m<n. Since G|y=LG|z and dim LG|p=
dim LG|;, it follows that G|y is also an m-dimensional weak Chebyshev
subspace of C(X).
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