JOURNAL OF APPROXIMATION THEORY 52, 269-283 (1988)

Properties of Unicity Subspaces in L₁-Approximation

MANFRED SOMMER

Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, 8078 Eichstätt, West Germany

Communicated by Allan Pinkus

Received October 16, 1985; revised December 6, 1985

The purpose of this paper is to consider the A-subspaces of C(X), where $X = \operatorname{int} X \subset \mathbb{R}$, X compact. It is known that these subspaces guarantee uniqueness of best L_1 -approximations for weighted approximation of continuous real-valued functions. Some properties of the A-subspaces are proved. For example, it is shown that every *n*-dimensional A-subspace contains an (n-1)-dimensional A-subspace. (2) 1988 Academic Press, Inc.

1. INTRODUCTION

Let X be a compact subset of the real Euclidean space \mathbb{R}^n $(n \ge 1)$ such that X = int X, i.e., X is the closure of its interior. By C(X) we denote the linear space of all continuous real-valued functions defined on X. Moreover, let

 $W = \{w : X \to \mathbb{R} : w \text{ is Lebesgue-measurable, bounded, and positive on } X\},\$

the set of weight functions. For any $w \in W$ we define the weighted L_1 -norm by

$$||f||_{w} = \int_{X} |f(x)| w(x) dx \qquad (f \in C(X)).$$

If G is a finite-dimensional subspace of C(X), then a function $g_0 \in G$ is called a *best* $L_1(w)$ -approximation of $f \in C(X)$ from G if $||f - g_0||_w \leq ||f - g||_w$ for every $g \in G$. The subspace G is called an $L_1(w)$ -unicity subspace of C(X) if every $f \in C(X)$ has a unique best $L_1(w)$ -approximation from G.

In recent years the problem of existence of $L_1(w)$ -unicity subspaces was widely investigated, because, unlike the situation in the uniform norm, an $L_1(w)$ -unicity subspace is not necessarily a Haar subspace. For example, Galkin [3] and Strauss [19] showed that every subspace of spline functions with fixed knots (including the Haar subspaces) is an $L_1(w)$ unicity subspace of C[a, b], where $w \equiv 1$ and [a, b] denotes a real compact interval. Carroll and Braess [1] proved the same statement for every subspace of C[a, b] which is continuously composed by Haar subspaces.

Looking for a condition ensuring uniqueness, DeVore and Strauss formulated a condition, the so-called A-property, which is sufficient to guarantee $L_1(w)$ -uniqueness for every $w \in W$ (see [21]). This condition depends only on inner properties of the approximating subspace and it is in many instances verifiable. For example, the above-mentioned spline subspaces satisfy the A-property. Moreover, we showed in [11, 12] that certain subspaces of generalized spline functions in C[a, b], including those mentioned above, also satisfy the A-property and guarantee therefore $L_1(w)$ -uniqueness for every $w \in W$.

Kroó [6] and Pinkus [8] were able to show that the A-property is also necessary for $L_1(w)$ -uniqueness. More precisely, Kroó proved that if G is an $L_1(w)$ -unicity subspace of C[a, b] for every $w \in W$ satisfying $\inf_{x \in [a,b]} w(x) > 0$, then G satisfies the A-property, and Pinkus proved this statement under the weaker hypothesis that G is an $L_1(w)$ -unicity subspace for every continuous $w \in W$, however, he had to make minor restrictions on G. Using the same arguments as in [6] we generalized in [14] Kroó's result for $L_1(w)$ -unicity subspaces of C(X), where $X \subset \mathbb{R}^n$ $(n \ge 1)$. Recently Kroó [7] extended this statement to $L_1(w)$ -unicity subspaces of C(X, B), where as above $X \subset \mathbb{R}^n$ $(n \ge 1)$ and B denotes a real Banach space.

In the case when X = [0, 1], Pinkus [8] characterized those subspaces of C[0, 1] which satisfy the A-property. He showed that every such subspace is a very spline-like space similar to those generalized spline spaces which we considered in [11, 12]. Recently Pinkus and Wajnryb [9] were able to characterize all A-subspaces of C(X), where $X \subset \mathbb{R}$, and they gave necessary conditions ensuring the A-property in the case when $X \subset \mathbb{R}^n$ $(n \ge 1)$.

Using their results we study the A-subspaces of C(X), where $X \subset \mathbb{R}$, in more detail. We proved in [14] that every such A-subspace G is necessarily a weak Chebyshev subspace. Hence it follows from results in Sommer and Strauss [16] and Stockenberg [17] that there exists a basis $\{g_1, ..., g_n\}$ of G such that span $\{g_1, ..., g_i\}$ is again a weak Chebyshev subspace, $1 \le i \le n-1$. In this paper we prove that there exists a basis $\{g_1, ..., g_n\}$ of G such that span $\{g_1, ..., g_i\}$ is even an A-subspace, $1 \le i \le n-1$. Moreover, we show that the restriction of an A-subspace G to certain (but not to all) subsets \tilde{X} of X is again an A-subspace. This is different from the situation for a weak Chebyshev subspace G, because $G|_{\tilde{X}}$ is always a weak Chebyshev subspace for every $\tilde{X} \subset X$ (see also [12]).

Finally, it should be noted that the only known instances of "nontrivial" *A*-subspaces of C(X), where $X \subset \mathbb{R}^n$ and n > 1, are subspaces of affine-linear functions (see Kroó [5]) and certain subspaces of bivariate linear spline functions (see [15]).

2. The A-Property

Let $X = int X \subset \mathbb{R}^n$ $(n \ge 1)$, X compact, and let G denote an n-dimensional subspace of C(X). Then the subset G^* of C(X) is defined by

$$G^* = \{ g^* \in C(X) : \text{there exists a function } g' \in G \}$$

such that $|g^*(x)| = |g'(x)|$ for every $x \in X$.

Such sets were introduced by Strauss [20] to characterize the $L_1(w)$ -unicity subspaces of C[a, b].

Moreover, set

$$Z(G) = \{ x \in X : g(x) = 0 \text{ for every } g \in G \}$$

and for any $g \in G$ let

$$Z(g) = \{ x \in X : g(x) = 0 \}.$$

Now the A-property can be defined as follows.

DEFINITION. We say that G satisfies the A-property (or G is an A-subspace of C(X)) if for any $g^* \in G^* \setminus \{0\}$ there exists a function $\tilde{g} \in G \setminus \{0\}$ such that

- (1) $\tilde{g}(x) = 0$ a.e. on $Z(g^*)$ and
- (2) $\tilde{g}(x) g^*(x) \ge 0$ for every $x \in X \setminus Z(g^*)$.

In the case when X = [a, b], the A-property was introduced by DeVore and Strauss (see [21]). The above version is due to Kroó [5]. Obviously this definiton depends only on inner properties of the subspace G and it is independent of some $w \in W$.

The following characterization shows that the A-property is closely related to the problem of existence of $L_1(w)$ -unicity subspaces of C(X).

THEOREM 2.1. The following conditions are equivalent:

(1) G is an $L_1(w)$ -unicity subspace for every $w \in W$ with $\inf_{x \in X} w(x) > 0$;

(2) G satisfies the A-property.

Remark. In the case when X = [a, b], the implication $(2) \Rightarrow (1)$ was verified by Strauss [21] and the converse was proved by Kroó [6]. At the same time, Pinkus [8] also verified the implication $(1) \Rightarrow (2)$ for those subspaces G of C[0, 1] for which $\lambda(Z(g)) = \lambda(\operatorname{int} Z(g))$ ($g \in G$), where λ denotes the Lebesgue measure, but under the weaker hypothesis that G is an $L_1(w)$ -unicity subspace for every continuous $w \in W$.

Using the same arguments as in [6] we proved Theorem 2.1 in [14], i.e., for any compact subset X of \mathbb{R}^n $(n \ge 1)$ with $X = \overline{\operatorname{int} X}$.

Independently of us, Kroó [7] studied the problem of existence of $L_1(w)$ -unicity subspaces of C(X, B), where X is the same subset of \mathbb{R}^n as above and C(X, B) denotes the space of continuous functions from X to a real Banach space B. He extended the statement of Theorem 2.1 by showing in [7] that if B is a strictly convex Banach space, then (2) implies (1), and if B is a smooth Banach space, then the converse also holds.

Some partial results of Theorem 2.1 were obtained in [5, 13].

As we mentioned in the Introduction, several classes of A-subspaces of C[a, b] were defined in [1, 3, 11, 12, 19], including Haar subspaces and subspaces of spline functions. All these spaces have a common property which plays an important role in approximation theory, the so-called weak Chebyshev property.

We first record this definition and some properties of weak Chebyshev subspaces, which we will use in the following.

DEFINITION. Let $X \subset \mathbb{R}$ and let G denote an n-dimensional subspace of C(X). Then G is said to be *weak Chebyshev* if each $g \in G$ has at most n-1 sign changes, i.e., there do not exist points $x_1 < \cdots < x_{n+1}$ in X such that $g(x_i) g(x_{i+1}) < 0, i = 1, ..., n$.

THEOREM 2.2 (Jones and Karlovitz [4]). Let $X = [0, 1] \subset \mathbb{R}$ and let G denote an n-dimensional subspace of C[0, 1]. Then the following conditions are equivalent:

(1) G is a weak Chebyshev subspace;

(2) Given $0 = x_0 < x_1 < \cdots < x_{n-1} < x_n = 1$ there exists a $g \in G \setminus \{0\}$ for which

$$(-1)^{i}g(x) \ge 0, \qquad x \in [x_{i-1}, x_{i}], i = 1, ..., n.$$

THEOREM 2.3 (Stockenberg [17]). Let $X \subset \mathbb{R}$ and let G denote an ndimensional weak Chebyshev subspace of C(X). Then there exists an (n-1)dimensional subspace \tilde{G} of G such that \tilde{G} is weak Chebyshev.

Remark. Independently of Stockenberg, Sommer and Strauss [16] proved the statement of the above theorem in the case when X = [0, 1].

THEOREM 2.4 [12]. Let X = [0, 1] and let G denote an n-dimensional weak Chebyshev subspace of C[0, 1]. For any $0 \le a < b \le 1$, $G|_{[a,b]}$ is a weak Chebyshev subspace of dimension $\le n$.

To state a further result on weak Chebyshev subspaces we need the following notations.

DEFINITION. Let $X \subset \mathbb{R}$ and let $x_1 < \cdots < x_n$ be zeros of a function f which is defined on X. Then the zeros x_1, \dots, x_n are said to be *separated* if there exist $y_i \in (x_i, x_{i+1})$, $1 \le i \le n-1$ such that $f(y_i) \ne 0$.

THEOREM 2.5 (Stockenberg [18]). Let $X \subset \mathbb{R}$ and let G denote an ndimensional weak Chebyshev subspace of C(X). Then the following conditions hold:

(1) If there is a $g \in G$ with n separated zeros $z_1 < \cdots < z_n$ in X such that $\{z_1, ..., z_n\} \cap Z(G) = \emptyset$, then g(x) = 0 for all $x \in X$ with $x \leq z_1$ and $x \geq z_n$;

(2) Every $g \in G$ has at most n separated zeros in $X \setminus Z(G)$.

Moreover, we will use a result on Haar subspaces which was proved by Krein (see Rutman [10]).

THEOREM 2.6. Let X = (0, 1) and let G denote an n-dimensional Haar subspace of C(X). Then there exists a basis $\{g_1, ..., g_n\}$ of G such that span $\{g_1, ..., g_i\}$ is a Haar subspace of C(X), $1 \le i \le n-1$.

The following result shows that the weak Chebyshev spaces also play an important role in L_1 -approximation.

THEOREM 2.7 [14]. Let $X = int X \subset \mathbb{R}$, X compact, and let G denote an A-subspace of C(X). Then G is weak Chebyshev.

Now let $X = \overline{\operatorname{int} X} \subset \mathbb{R}^n$ $(n \ge 1)$, X compact, and let G denote an n-dimensional subspace of C(X). Let $g \in G \setminus \{0\}$. Then $X \setminus Z(g)$ is open with respect to X. As such it is an at most countable union of open (w.r.t. X) connected domains. We denote by $|X \setminus Z(g)|$ the number of such open connected domains. This number may be infinite.

Our investigations of the A-subspaces are based on the following theorems.

THEOREM 2.8 (Pinkus and Wajnryb [9]). Assume that G satisfies the A-property. Then the following statements hold:

(1) Let $g^* \in G \setminus \{0\}$ and

$$G(g^*) = \{ g \in G : g(x) = 0 \text{ a.e. on } Z(g^*) \}.$$

Then for every $g \in G(g^*)$,

$$|X \setminus Z(g)| \leq \dim G(g^*).$$

(2) If $X \setminus Z(G)$ is not connected, then G decomposes, i.e., $X \setminus Z(G) = \bigcup_{i=1}^{k} A_i$, where A_i is open connected in X, and if dim $G|_{A_i} = m_i$ $(m_i \ge 1)$, $1 \le i \le k$, then $\sum_{i=1}^{k} m_i = n$ and there exist functions $\{g_1^{(i)}, ..., g_{m_i}^{(i)}\}$ in G such that

$$G|_{A_i} = \operatorname{span} \{ g_1^{(i)} |_{A_i}, ..., g_{m_i}^{(i)} |_{A_i} \}$$

and $g_i^{(i)}$ vanishes identically off A_i , $1 \le j \le m_i$, $1 \le i \le k$.

Remark. (1) In the case when X = [0, 1], the above result was obtained by Pinkus [8].

(2) Statement (1) of the above theorem immediately implies that if $X \subset \mathbb{R}$, then $G(g^*)$ and, in particular, G are weak Chebyshev subspaces of C(X).

(3) Using the same notations as in Theorem 2.8, set $G_i = \text{span}\{g_1^{(i)}, \dots, g_{m_i}^{(i)}\}, 1 \le i \le k$. Then by statement (2),

$$G = G_1 \oplus \cdots \oplus G_k.$$

Moreover, it is easily verified that G_i is an A-subspace of C(X), $1 \le i \le k$.

Conversely, if \tilde{G}_i is an A-subspace of C(X) such that all functions in \tilde{G}_i vanish identically off A_i , $1 \le i \le k$, then the space \tilde{G} defined by

$$\tilde{G} = \tilde{G}_1 \oplus \cdots \oplus \tilde{G}_k$$

is an A-subspace of C(X).

In the following we are only interested in the case when $X \subset \mathbb{R}$. In this case the connected domains A_i in X reduce to real bounded closed, open, or half-open intervals. On the basis of Theorem 2.8 and the above remark we can therefore assume that X = [0, 1] and $Z(G) \cap (0, 1) = \emptyset$. Recently Pinkus [8] was able to characterize all A-subspaces of C[0, 1].

To state his result we first present the following definition.

DEFINITION. We say that $[a, b], 0 \le a < b \le 1$, is a zero interval of $g \in G$ if g(x) = 0 for every $x \in [a, b]$ and $g(x) \ne 0$ for every $x \in (a - \varepsilon, a)$, some $\varepsilon > 0$, if a > 0 and $g(x) \ne 0$ for every $x \in (b, b + \varepsilon)$, some $\varepsilon > 0$, if b < 1.

THEOREM 2.9 (Pinkus [8]). Let G be an n-dimensional subspace of C[0, 1] and assume that $Z(G) \cap (0, 1) = \emptyset$. Then G satisfies the A-property if and only if the following conditions (1)-(4) hold:

(1) G is a weak Chebyshev space;

(2) There exist points $0 = c_0 < c_1 < \cdots < c_l < c_{l+1} = 1$ $(0 \le l \le 2n-2)$ such that $G|_{(c_{l-1},c_l)}$ is a Haar subspace, $1 \le i \le l+1$;

(3) If [a, b] is a zero interval of $g \in G \setminus \{0\}$, then $a = c_p$, $b = c_q$ for some $0 \le p < q \le l+1$, and there exists an $h \in G$ for which

$$h(x) = \begin{cases} g(x) & \text{if } 0 \le x < a \\ 0 & \text{if } a \le x \le 1 \end{cases}$$

and there exists an $\tilde{h} \in G$ for which

$$\tilde{h}(x) = \begin{cases} 0 & \text{if } 0 \le x \le b \\ g(x) & \text{if } b < x \le 1; \end{cases}$$

(4) If $G_{pq} = \{g \in G: g(x) = 0 \text{ for every } x \in [0, c_p) \cup (c_q, 1]\}$ for $0 \leq p < q \leq l+1$, then G_{pq} is a weak Chebyshev space of dimension $\leq n$.

Remark. (1) The set $\{c_1, ..., c_l\}$ denotes the ordered distinct points of the set $\{b_1, ..., b_r, a_1, ..., a_s\}$, where, for every $1 \le p \le s$, $[a_p, 1]$ is a zero interval of some $g \in G \setminus \{0\}$ and analogously for every $1 \le q \le r$, $[0, b_q]$ is a zero interval of some $g \in G \setminus \{0\}$.

(2) By Theorems 2.8 and 2.9 and the remark following Theorem 2.8, a characterization of all A-subspaces of C(X), where $X \subset \mathbb{R}$, is given.

3. Some Properties of A-Subspaces

At first we will show that every A-subspace G of C(X), where $X \subset \mathbb{R}$, contains a basis $\{g_1, ..., g_n\}$ such that span $\{g_1, ..., g_i\}$ is also an A-subspace, $1 \le i \le n-1$. By the arguments given in Section 2, it is sufficient to consider the case when X = [0, 1] and $Z(G) \cap (0, 1) = \emptyset$.

Now let, for some *n*-dimensional A-subspace G of C[0, 1], $\{c_1, ..., c_l\}$ be the ordered set of points from Theorem 2.9. If l=0, G is a Haar space on (0, 1) and then by Theorem 2.6 there exists a basis $\{g_1, ..., g_n\}$ of G such that span $\{g_1, ..., g_i\}$ is also an A-subspace of C[0, 1], $1 \le i \le n-1$. If $l \ge 1$, then by the above remark there exists a $g \in G \setminus \{0\}$ such that $g \equiv 0$ in $[0, c_i]$ or $g \equiv 0$ in $[c_i, 1]$. This implies that dim $G_{l,l+1} \ge 1$ or dim $G_{0,1} \ge 1$, where for $0 \le i < j \le l+1$,

$$G_{i,j} = \{ g \in G : g \equiv 0 \text{ in } [c_i, c_j] \}.$$

To prove our first main result we need the following statement.

LEMMA 3.1. Let G be an n-dimensional A-subspace of C[0, 1] such that $Z(G) \cap (0, 1) = \emptyset$. Moreover, assume that $l \ge 1$ and dim $G_{l,l+1} \ge 1$. Then G contains an (n-1)-dimensional weak Chebyshev subspace \tilde{G} such that $G_{l,l+1} \subset \tilde{G}$.

Proof. We distinguish two cases.

(i) There exists a function $g \in G$ with $g(1) \neq 0$. Set

$$\tilde{G} = \{ g \in G \colon g(1) = 0 \}.$$

Then by Stockenberg [17, Theorem 1], \tilde{G} is an (n-1)-dimensional weak Chebyshev subspace. Moreover, since $c_{l+1} = 1$, $G_{l,l+1} \subset \tilde{G}$.

(ii) Let g(1) = 0 for every $g \in G$. Set for any $x \in (c_l, c_{l+1})$

$$G_x = \{ g \in G : g(x) = 0 \}.$$

By the definition of c_l , dim $G|_{[0,x]} = n$ for every $x \in (c_l, c_{l+1})$. Moreover, since $Z(G) \cap (0, 1) = \emptyset$, for every $x \in (c_l, c_{l+1})$ there exists a $g \in G$ with $g(x) \neq 0$. Therefore by case (i), G_x is an (n-1)-dimensional weak Chebyshev subspace of C[0, x] for every $x \in (c_l, c_{l+1})$ and $G_{l,l+1} \subset G_x$.

By Theorem 2.9, $G|_{(c_l,1)}$ is a Haar subspace. Obviously, dim $G|_{[c_l,1]} = n - m_{l,l+1}$, where $m_{l,l+1} = \dim G_{l,l+1}$. Set $r = n - m_{l,l+1}$. If r = 1, then $G|_{[c_l,1]} = \operatorname{span} \{\tilde{g}\}$, where $\tilde{g}(x) \neq 0$ for every $x \in (c_l, 1)$. This implies that dim $G_x|_{[c_l,1]} = 0$. If r > 1, then, since g(x) = 0 for every $g \in G_x$, every $g \in G_x \setminus \{0\}$ has at most r - 2 zeros in (c_l, x) or identically vanishes thereon. Moreover, it follows from $G_{l,l+1} \subset G_x$ and dim $G_x = n - 1$ that dim $G_x|_{[c_l,1]} = n - 1 - m_{l,l+1} = r - 1$. Therefore, in both cases G_x is a Haar subspace of dimension r - 1 on (c_l, x) . Then by Theorem 2.6 there exist functions $\{h_{1,x}, ..., h_{r-1,x}\}$ in G_x such that span $\{h_{1,x}, ..., h_{j,x}\}|_{(c_l,x)}$ is a Haar subspace of dimension $j, 1 \leq j \leq r - 1$.

Now let $G = \text{span} \{g_1, ..., g_n\}$ such that $\{g_1, ..., g_r\}$ are linearly independent on $[c_l, 1]$ and $g_i \equiv 0$ in $[c_l, 1]$ for $r+1 \leq i \leq n$, i.e., $G_{l,l+1} = \text{span} \{g_{r+1}, ..., g_n\}$. Then $h_{j,x} = \sum_{i=1}^n \alpha_{ij,x} g_i, 1 \leq j \leq r-1$. Since we are only interested in the properties of $\{h_{1,x}, ..., h_{r-1,x}\}$ in $[c_l, 1]$, we may assume that $\alpha_{ij,x} = 0, r+1 \leq i \leq n, 1 \leq j \leq r-1$. Moreover, assume that $\max_{r \in [0,1]} |h_{j,x}(t)| = 1$ and $h_{j,x}$ has precisely j-1 changes in (c_l, x) at the points

$$z_i = c_i + i(x - c_i)/j,$$
 $1 \le i \le j - 1, 1 \le j \le r - 1.$

This holds for every $x \in (c_l, 1)$. Then, since $\{h_{1,x}, ..., h_{r-1,x}\}$ are contained in the finite-dimensional space G, there exist a sequence $(y_m) \subset (c_l, 1)$ and functions $\{h_1, ..., h_{r-1}\}$ in G such that

$$\lim_{m \to \infty} y_m = 1 \quad \text{and} \quad \lim_{m \to \infty} \max_{t \in [0,1]} |h_{j,x}(t) - h_j(t)| = 0, \quad 1 \le j \le r - 1.$$

Obviously, $\max_{t \in [0,1]} |h_j(t)| = 1$, $1 \le j \le r-1$. Therefore, since $h_j = \sum_{i=1}^r \alpha_{ij} g_i, \alpha_{ij} \ne 0$ for some $i \in \{1, ..., r\}$. Then the linear independence of $\{g_1, ..., g_r\}$ on $[c_l, 1]$ implies that $h_j \ne 0$ in $[c_l, 1]$, $1 \le j \le r-1$.

276

Now we show that $\{h_1, ..., h_{r-1}\}$ are linearly independent on $[c_l, 1]$. At first recall that no function in G which is nonzero on $[c_l, 1]$ has a zero interval there. Hence every h_j has precisely j-1 changes of sign in $(c_l, 1)$, $1 \le j \le r-1$. Moreover, it is easily verified that by the properties of $\{h_{1,y_m}, ..., h_{r-1,y_m}\}$, span $\{h_1, ..., h_j\}$ is a weak Chebyshev subspace of dimension j on $[c_l, 1]$, $1 \le j \le r-1$. Therefore $\{h_1, ..., h_{r-1}\}$ are linearly independent on $[c_l, 1]$.

Now define

$$\tilde{G} = G_{l,l+1} \oplus \operatorname{span}\{h_1, ..., h_{r-1}\}.$$

By the above arguments, dim $\tilde{G} = m_{i,l+1} + r - 1 = n - 1$. It remains to show that \tilde{G} is weak Chebyshev. Assume that there exists a function $\tilde{g} \in \tilde{G}$ with at least n-1 sign changes in (0, 1). Let $\tilde{g} = \sum_{i=1}^{r-1} \beta_i h_i + \sum_{i=r+1}^n \gamma_i g_i$. Since the sequence (h_{j,y_m}) converges uniformly to h_j , $1 \le j \le r-1$, \tilde{g} can be uniformly approximated by functions $\tilde{g}_m \in G_{y_m}$. Then for some sufficiently large m, \tilde{g}_m has n-1 sign changes in $(0, y_m)$, a contradiction to the weak Chebyshev property of G_{y_m} .

Thus we have obtained an (n-1)-dimensional weak Chebyshev subspace \tilde{G} which contains $G_{l,l+1}$.

We are now able to state our first main result.

THEOREM 3.2. Let G be an n-dimensional A-subspace of C[0, 1] such that $Z(G) \cap (0, 1) = \emptyset$. Then G contains an (n - 1)-dimensional A-subspace \tilde{G} .

Proof. If l=0, G is a Haar space on (0, 1), and then by Theorem 2.6 there exists a basis $\{g_1, ..., g_n\}$ of G such that span $\{g_1, ..., g_i\}$ is also an A-subspace of $C[0, 1], 1 \le i \le n-1$.

If $l \ge 1$, then dim $G_{0,1} \ge 1$ or dim $G_{l,l+1} \ge 1$. Without loss of generality we assume the latter.

Let \tilde{G} be the (n-1)-dimensional subspace of G which was defined in the above lemma. We will show that G is even an A-subspace. To do this let $g^* \in \tilde{G}^*$ and let $g_0 \in \tilde{G}$ such that $|g_0| = |g^*|$ on [0, 1]. We distinguish three cases.

(i) Let $g_0 \neq 0$ on $[0, c_i]$ and let $g_0 \equiv 0$ in some interval $[c_i, c_j]$, where $0 < c_i < c_j \leq 1$. Then by Theorem 2.9 there exists a function $\tilde{g} \in G$ such that

$$\tilde{g}(x) = \begin{cases} g_0(x) & \text{if } 0 \leq x < c_i \\ 0 & \text{if } c_i \leq x \leq 1, \end{cases}$$

which implies that $\tilde{g} \in G_{i,l+1}$. Now define

$$\tilde{g}^{*}(x) = \begin{cases} g^{*}(x) & \text{if } 0 \le x < c_i \\ 0 & \text{if } c_i \le x \le 1. \end{cases}$$

Then $|\tilde{g}^*| = |\tilde{g}|$ on [0, 1] and therefore $\tilde{g}^* \in G^*_{i,l+1}$. It is easily verified that $G_{i,l+1}$ is an A-subspace. Hence there exists a nonzero function $\hat{g} \in G_{i,l+1} \subset G_{i,l+1} \subset \tilde{G}$ such that

$$\hat{g}(x) = 0$$
 a.e. on $Z(\tilde{g}^*)$

and

$$\hat{g}(x) \, \tilde{g}^*(x) \ge 0$$
 for every $x \in [0, 1] \setminus Z(\tilde{g}^*)$.

Therefore, since $Z(g^*) \subset Z(\tilde{g}^*)$ and $g^* = \tilde{g}^*$ on $[0, c_i]$,

 $\hat{g}(x) = 0$ a.e. on $Z(g^*)$

and

$$\hat{g}(x) g^*(x) \ge 0$$
 for every $x \in [0, 1] \setminus Z(g^*)$.

(ii) Let $g_0 \equiv 0$ on $[0, c_i]$ for some $i \in \{1, ..., l\}$ and let $g_0 \neq 0$ in every interval $[c_{i+r}, c_{i+r+1}], 0 \leq r \leq l-i$. If $G_{0,i} \subset \tilde{G}$, we can conclude exactly as in case (i). (Note that $G_{0,i}$ is also an A-subspace.)

Otherwise we set

$$\hat{G} = \{ g \in \tilde{G} \colon g \equiv 0 \text{ on } [0, c_i] \}.$$

We will show that \hat{G} is a weak Chebyshev subspace with dimension $m_{0i} - 1$, where $m_{0i} = \dim G_{0,i}$. At first observe that, since \hat{G} is a subspace of \tilde{G} , \tilde{G} can be written as

$$\tilde{G} = \hat{G} \oplus \text{span} \{ g_1, ..., g_r \},\$$

where $\{g_1, ..., g_r\}$ are linearly independent on $[0, c_i]$. Hence, $n-1 = \dim \tilde{G} = \dim \hat{G} + r$. Since $\dim G|_{[0,c_i]} = n - m_{0i}$, $r \le n - m_{0i}$. This implies that $\dim \hat{G} = n - 1 - r \ge m_{0i} - 1$. Therefore, since by assumption $G_{0,i} \notin \tilde{G}$, $\dim \hat{G} = m_{0i} - 1 > 0$. Assume now that \hat{G} is not weak Chebyshev. Then there exists a function $g \in \hat{G}$ with at least $m_{0i} - 1$ sign changes in $(c_i, 1)$. By the above arguments, $\dim \tilde{G}|_{[0,c_i]} = r = n - m_{0i}$. Moreover, by Theorem 2.4, $\tilde{G}|_{[0,c_i]}$ is weak Chebyshev. Hence we find a function $\tilde{g} \in \tilde{G}$ with $n - m_{0i} - 1$ sign changes in $(0, c_i)$. Then it is easily verified that for some sufficiently small constant c, the function $g + c\tilde{g}$ has at least n - 1 sign changes in (0, 1), which contradicts the weak Chebyshev property of \tilde{G} . Therefore, \hat{G} is an $(m_{0i} - 1)$ -dimensional weak Chebyshev space.

By assumption, g_0 has only finitely many zeros in $(c_i, 1)$. If in particular g_0 has at most $m_{0i} - 2$ zeros there, then the function g^* has at most $m_{0i} - 2$ sign changes. Therefore, using Theorems 2.2 and 2.3 and the fact that \hat{G} is weak Chebyshev, we find a nonzero function $\tilde{g} \in \hat{G} \subset \tilde{G}$ such that

$$\tilde{g}(x) = 0$$
 a.e. on $Z(g^*)$

and

$$\tilde{g}(x) g^*(x) \ge 0$$
 for every $x \in [0, 1] \setminus Z(g^*)$.

Assume now that g^* has at least $m_{0i} - 1$ sign changes in $(c_i, 1)$. This implies that g_0 has at least $m_{0i} - 1$ zeros there. Let $c_i < z_1 < \cdots < z_s < 1$ be all zeros with sign changes of g^* . Then $s \ge m_{0i} - 1$ and $g_0(z_j) = 0$, $1 \le j \le s$. Since $g_0 \in \hat{G}$ and \hat{G} is an $(m_{0i} - 1)$ -dimensional weak Chebyshev space, by Theorem 2.5, $g(z_n) = 0$ for every $g \in \hat{G}$ and some $p \in \{1, ..., s\}$.

Since $g^* \in \hat{G}^* \subset G^*_{0,i}$, by the *A*-property of $G_{0,i}$ there exists a function $\hat{g} \in G_{0,i} \setminus \{0\}$ such that

$$\tilde{g}(x) g^*(x) \ge 0$$
 for every $x \in [c_i, 1]$.

If $\tilde{g} \in \hat{G}$, case (ii) is completely treated.

Assume therefore that $\tilde{g} \notin \hat{G}$. Then $G_{0,i}$ can be written as

 $G_{0,i} = \hat{G} \oplus \text{span} \{ \tilde{g} \}.$

Obviously, $\tilde{g}(z_j) = 0$, $1 \le j \le s$. Then by the above arguments, $g(z_p) = 0$ for every $g \in G_{0,i}$. Since $G_{0,i}$ is an A-space, it follows from Theorem 2.8 that there exists a function $\bar{g} \in G_{0,i}$ such that

$$\bar{g}(x) = \begin{cases} g_0(x) & \text{if } 0 \leq x < z_p \\ 0 & \text{if } z_p \leq x \leq 1. \end{cases}$$

Since by assumption g_0 has no zero interval in $[c_i, z_p]$, $[z_p, 1]$ is a zero interval of \bar{g} . Then by the definition of $\{c_1, ..., c_l\}$, $z_p = c_q$ for some $q \in \{i + 1, ..., l\}$. This implies that $\bar{g} \in G_{q,l+1} \setminus \{0\}$.

Now define

$$\bar{g}^{*}(x) = \begin{cases} g^{*}(x) & \text{if } 0 \leq x < c_{q} \\ 0 & \text{if } c_{q} \leq x \leq 1. \end{cases}$$

Then $|\bar{g}^*| = |\bar{g}|$ and therefore $\bar{g}^* \in G_{q,l+1}^*$. Since $G_{q,l+1}$ is an A-space, there exists a nonzero function $\hat{g} \in G_{q,l+1} \subset G_{l,l+1} \subset \tilde{G}$ such that

$$\hat{g}(x) = 0$$
 a.e. on $Z(\bar{g}^*)$

and

$$\hat{g}(x) \, \bar{g}^*(x) \ge 0$$
 for every $x \in [0, 1] \setminus Z(\bar{g}^*)$.

Hence $\hat{g}(x) g^*(x) \ge 0$ for every $x \in [c_i, 1]$.

(iii) Let g_0 not vanish identically on a subinterval of [0, 1]. Then, since dim G = n and $Z(G) \cap (0, 1) = \emptyset$, by Theorem 2.5, g_0 and therefore g^* have at most n-1 zeros in (0, 1). If in particular g^* has at most n-2sign changes in (0, 1), then, since \tilde{G} is an (n-1)-dimensional weak Chebyshev subspace, by Theorems 2.2 and 2.3 there exists a function $\tilde{g} \in \tilde{G} \setminus \{0\}$ such that

$$\tilde{g}(x) g^*(x) \ge 0$$
 for every $x \in [0, 1] \setminus Z(g^*)$.

Assume therefore that g^* has precisely n-1 sign changes in (0, 1), which implies that g_0 has precisely n-1 zeros $0 < z_1 < \cdots < z_{n-1} < 1$. Since G is an A-space, there exists a function $\tilde{g} \in G \setminus \{0\}$ such that

$$\tilde{g}(x) g^*(x) \ge 0$$
 for every $x \in [0, 1] \setminus Z(g^*)$.

If $\tilde{g} \in \tilde{G}$, the statement is verified. Otherwise, $G = \tilde{G} \oplus \text{span} \{\tilde{g}\}$. Moreover, it follows that $\tilde{g}(z_j) = 0$, $1 \leq j \leq n-1$. Assume now that $g(z_p) = 0$ for every $g \in \tilde{G}$ and some $p \in \{1, ..., n-1\}$. Then $\tilde{g}(z_p) = 0$ implies that $z_p \in Z(G)$, a contradiction.

Hence we have shown that $Z(\tilde{G}) \cap \{z_1, ..., z_{n-1}\} = \emptyset$. Then by Theorem 2.5, $g_0(x) = 0$ for all $x \in [0, 1]$ with $x \leq z_1$ and $x \geq z_{n-1}$, a contradiction of the hypothesis on g_0 . Thus we have verified that $\tilde{g} \in \tilde{G}$ and case (iii) is completely treated.

The following example will show that there exist (n-1)-dimensional weak Chebyshev subspaces \hat{G} of G such that \hat{G} does not satisfy the A-property.

EXAMPLE. Let
$$G = \text{span} \{ g_1, g_2, g_3 \} \subset C[0, 1]$$
, where $g_1 \equiv 1$,

$$g_{2}(x) = \begin{cases} 0 & \text{if } 0 \leq x \leq \frac{3}{4} \\ x - \frac{3}{4} & \text{if } \frac{3}{4} < x \leq 1, \end{cases}$$
$$g_{3}(x) = \begin{cases} \frac{1}{4} - x & \text{if } 0 \leq x < \frac{1}{4} \\ 0 & \text{if } \frac{1}{4} \leq x \leq 1. \end{cases}$$

Then it follows from Theorem 2.9 that G is an A-space and it can be decomposed into Haar subspaces by the points $c_0 = 0$, $c_1 = \frac{1}{4}$, $c_2 = \frac{3}{4}$, $c_3 = 1$. Now let $\hat{G} = \text{span} \{g_1, g_2 - g_3\}$. Then it is easily verified that \hat{G} is a two-dimensional weak Chebyshev subspace of G, but it does not satisfy the A-property, because condition (3) in Theorem 2.9 is violated. As we mentioned in Section 2, all arguments which we used in the case X = [0, 1] remain valid in the general case when $X = int X \subset \mathbb{R}$, X compact. We therefore obtain the following generalization of Theorem 3.2.

COROLLARY. Let $X = \overline{\operatorname{int} X} \subset \mathbb{R}$, X compact, and let G denote an ndimensional A-subspace of C(X). Then G has a basis $\{g_1, ..., g_n\}$ such that span $\{g_1, ..., g_i\}$ is an A-space, $1 \leq i \leq n-1$.

Now we will show that the restriction of an A-space to certain subsets of X is again an A-space.

THEOREM 3.3. Let G be an n-dimensional A-subspace of C[0, 1] and assume that $Z(G) \cap (0, 1) = \emptyset$. If I is a subinterval of [0, 1], then $\tilde{G} = G|_I$ is an A-subspace of $C(\bar{I})$ of dimension $\leq n$.

Proof. Assume that $I = [a, b] \subset [0, 1]$. The statement is proved if $\tilde{G} = G|_I$ satisfies the conditions (1)-(4) in Theorem 2.9.

Since by Theorem 2.7, G is a weak Chebyshev space, by Theorem 2.4, \tilde{G} is also a weak Chebyshev space. Therefore condition (1) in Theorem 2.9 is satisfied.

It follows from Theorem 2.9 that, since G is an A-space, there exist points $a = d_0 < d_1 < \cdots < d_p < d_{p+1} = b$, where for some $j \in \{0, ..., l\}$

$$c_{j} \leq d_{0}, d_{q} = c_{j+q}, 1 \leq q \leq p, d_{p+1} \leq c_{j+p+1}$$

such that $\tilde{G}|_{(d_{q-1},d_q)}$ is a Haar subspace, $1 \leq q \leq p+1$. Moreover, it is obvious that \tilde{G} satisfies condition (3). By using this condition, the last condition (4) is also easily verified.

As we mentioned above, the general case can be easily derived from the case X = [0, 1]. It is therefore not difficult to prove the following generalization of Theorem 3.3.

COROLLARY. Let $X = \overline{\operatorname{int} X} \subset \mathbb{R}$, X compact, and let G denote an ndimensional A-subspace of C(X). If I is a real bounded interval, then $\tilde{G} = G|_{\tilde{X}}$ is an A-subspace of $C(\tilde{X})$, where $\tilde{X} = \overline{\operatorname{int}(I \cap X)}$.

Remark. (1) The above statement fails if we consider the restriction of an A-space to an arbitrary compact subset \tilde{X} of X with $\tilde{X} = int \tilde{X}$:

Let X = [0, 1] and let $\tilde{X} = [0, \frac{1}{4}] \cup [\frac{3}{4}, 1]$. Assume that $G = \text{span}\{1\}$. Then $\tilde{G} = G|_{\tilde{X}}$ does not satisfy the *A*-property, because for the function $g^* \in \tilde{G}^*$ defined by

$$g^{*}(x) = \begin{cases} 1 & \text{if } 0 \le x \le \frac{1}{4} \\ -1 & \text{if } \frac{3}{4} \le x \le 1, \end{cases}$$

no function $g \in \tilde{G} \setminus \{0\}$ exists such that $g(x) g^*(x) \ge 0$ for every $x \in \tilde{X}$.

MANFRED SOMMER

(2) Let X be an arbitrary compact real subset and let G denote an ndimensional weak Chebyshev subspace of C(X). If \tilde{X} is any compact subset of X, then, unlike the situation for A-spaces, the restriction of G to \tilde{X} is always a weak Chebyshev subspace of $C(\tilde{X})$. To prove this let $I = [\min X, \max X]$. Then $I \setminus X$ is open with respect to I and therefore it is an at most countable union of disjoint open intervals. Hence every $f \in C(X)$ can be extended to a unique function $Lf \in C(I)$ defined by Lf = f on X and Lf is linear on each of the disjoint open intervals whose union is $I \setminus X$. Let

$$LG = \{ Lg \in C(I) \colon g \in G \}.$$

It was proved by Deutsch, Nürnberger, and Singer [2] that LG is an *n*-dimensional weak Chebyshev subspace of C(I). Now set $\tilde{I} = [\min \tilde{X}, \max \tilde{X}]$. Then $\tilde{I} \subset I$ and, by Theorem 2.4, $LG|_{\tilde{I}}$ is a weak Chebyshev subspace of $C(\tilde{I})$ of dimension $m \leq n$. Since $G|_{\tilde{X}} = LG|_{\tilde{X}}$ and dim $LG|_{\tilde{X}} = \dim LG|_{\tilde{I}}$, it follows that $G|_{\tilde{X}}$ is also an *m*-dimensional weak Chebyshev subspace of $C(\tilde{X})$.

REFERENCES

- 1. M. P. CARROLL AND D. BRAESS, On uniqueness of L₁-approximation for certain families of spline functions, J. Approx. Theory 12 (1974), 362–364.
- F. DEUTSCH, G. NÜRNBERGER, AND I. SINGER, Weak Chebyshev subspaces and alternation, *Pacific J. Math.* 89 (1980), 9-31.
- 3. P. V. GALKIN, The uniqueness of the element of best mean approximation to a continuous function using splines with fixed knots, *Math. Notes* 15 (1974), 3–8.
- 4. R. C. JONES AND L. A. KARLOVITZ, Equioscillation under nonuniqueness in the approximation of continuous functions, J. Approx. Theory 3 (1970), 138-145.
- A. KROÓ, Some theorems on best L₁-approximation of continuous functions, Acta Math. Hungar. 44 (1984), 409-417.
- 6. A. KROÓ, On an L₁-approximation problem, Proc. Amer. Math. Soc. 94 (1985), 406-410.
- 7. A. KROÓ, A general approach to the study of Chebyshev subspaces in L_1 -approximation of continuous functions, J. Approx. Theory, to appear.
- 8. A. PINKUS, Unicity subspaces in L¹-approximation, J. Approx. Theory 48 (1986), 226-250.
- 9. A. PINKUS AND B. WAJNRYB, Necessary conditions for uniqueness in L_1 -approximation, J. Approx. Theory, to appear.
- 10. M. A. RUTMAN, Integral representation of functions forming a Markov-system, Dokl. Akad. Nauk SSSR 164 (1965), 989–992.
- M. SOMMER, L₁-approximation by weak Chebyshev spaces, in "Approximation in Theorie und Praxis" (G. Meinardus, Ed.), pp. 85–102, Bibliographisches Institut, Mannheim, West Germany, 1979.
- 12. M. SOMMER, Weak Chebyshev spaces and best L₁-approximation, J. Approx. Theory **39** (1983), 54-71.
- M. SOMMER, Some results on best L₁-approximation of continuous functions, Numer. Funct. Anal. Optim. 6 (3) (1983), 253-271.
- 14. M. SOMMER, Uniqueness of best L_1 -approximations of continuous functions, *in* "Delay Equations, Approximation and Application" (G. Meinardus and G. Nürnberger, Eds.), pp. 264–281, ISNM 74, Birkhäuser, Stuttgart, 1985.

- 15. M. SOMMER, Examples of unicity subspaces in L_1 -approximation, Numer. Funct. Anal. Optim. 9 (1987), 131-146.
- M. SOMMER AND H. STRAUSS, Eigenschaften von schwach tschebyscheffschen Räumen, J. Approx. Theory 21 (1977), 257-268.
- 17. B. STOCKENBERG, Subspaces of weak and oriented Tchebyshev spaces, *Manuscripta Math.* 20 (1977), 401-407.
- 18. B. STOCKENBERG, On the number of zeros in a weak Tchebyshev space, Math. Z. 156 (1977), 49-57.
- H. STRAUSS, L₁-Approximation mit Splinefunktionen, in "Numerische Methoden der Approximationtheorie" (L. Collatz and G. Meinardus, Eds.), pp. 151–162, ISNM 26, Birkhäuser, Stuttgart, 1975.
- 20. H. STRAUSS, Eindeutigkeit in der L₁-Approximation, Math. Z. 176 (1981), 63-74.
- 21. H. STRAUSS, Best L₁-approximation, J. Approx. Theory 41 (1984), 297-308.